Biodiversity as the fundamental of plant population viability

Authors

DOI:

https://doi.org/10.37555/.15.2019.184904

Keywords:

adaptiogenesis, anthropization of the environmen, anthropogenic pressure, homeostasis, sex differentiation, environment, natural selection, reproductive potential, selectivity, phenotypic plasticity.

Abstract

Aim. The article is aimed at conducting the retrospective analysis and information generalization on environmental and social problems of the conservation of the planetary biota diversity, in particular regarding the viability of plant populations as its basic component. Methods. The historical aspects of biodiversity and the evolution of perception by the world community had been studied within the framework of a retrospective discourse analysis of experimental and theoretical research conducted in different countries by scholars from different scientific schools. We used hypothetical and deductive methods, considering that only living systems are characterized by interrelated and largely interdependent processes of individual and historical development. Results. Key events and processes affecting global environmental change and the effectiveness of international and national biodiversity conservation programs, in particular concerning plant populations, had been revealed. The following issues had been discussed: display regularities of adaptive and significant features in natural populations; estimation of phenotypic plasticity levels caused by the realization of the genotype in the phenotype depending on the homo- or heterozygous state of the gene(s) and many exo- and endogenous effects; the importance of double fertilization and the reciprocal effects of hybrid individuals adaptability, in particular in realizing the potential of cytoplasmic heredity of male generative cells; the effects of adaptation syndrome as a basis for the effectiveness of evolution and stress interdependence and adaptation to them; the role of biotic diversity components as a basis for the viability of plant populations, parameters of reproductive potential, shifting the sex ratio in natural populations of flowering plants. Conclusions. The anthropization of the environment, accompanied by progressive globalization, significantly changes the natural ecological status and dramatically affects its vegetation. Therefore, the following special measures can provide the richness of planetary flora as a core of human existence values: measures aimed at maintaining variable populations of native species in all their diversity, the preservation of the most valuable autochthonous nucleus, scientifically justified involvement of heterochthonous replenishment and minimization of contradictions between ecological integrity and economically diverse activity.

References

Annila A., & Annila E. (2012). The significance of sex. BioSystems. Vol. 110. № 3. P. 156–161. DOI: 10.1016/j.biosystems.2012.09.006.

Arent, K. P. (2001). Economic aspects of the greening of national economy development: A Monograph. Moscow, MSUPA Publ. 193 p. (in Russian).

Barrett, S. C. H., & Eckert, C. G. (1990). Variation and evolution of mating systems in seed plants. Biological approaches and evolutionary trends in plants. [Ed.: Shoichi Kawano]. Tokyo: Academic Press. P. 229–254.

Batygina, T. B. (1997). Double fertilization. Embryology of flowering plants. Terminology and concepts. Three volume edition. Vol. 2. Seed. [Ed.: Tatyana B. Batygina] St. Petersburg: World and Family-95. P. 31–45. (in Russian).

Baur, E. (1909). Das Wesen und die Erblichkeit sverhaltnisse der "Varietates albomarginate hort" von Pelargonium zonale. Zeitschrift für induktive Abstammungs-und Vererbungslehre. Vol. 1. № 1. P. 330–351.

Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: from individuals to ecosystems. [4th ed.]. Malden, MA et al.: Blackwell Publishing. 754 p.

Berger, P. L., & Luckman, T. (2011). The social construction of reality: A treatise in the sociology of knowledge. New York: Open Road Media. 219 р.

Borlaug, N. E. (2007). Sixty-two years of fighting hunger: personal recollections. Euphytica. Vol. 157. № 3. P. 287–297.

Bortz, F. (2014). Charles Darwin and the theory of evolution by natural selection. New York: Rosen Publishin g Group. 80 p.

Bossdorf, O., Richards, C. L., & Pigliucci, M. (2008). Epigenetics for ecologists. Ecology letters. Vol. 11, № 2. P. 106–115. DOI: 10.1111/j.1461-0248.2007.01130.x.

Busch, J. W., & Delph, L. F. (2012). The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of botany. Vol. 109. № 3. P. 553–562. DOI: 10.1093/aob/mcr219.

Carolan, M. (2018). Society and the environment: Pragmatic solutions to ecological issues. [2nd ed.]. Routledge. 366 p.

Cass, D. D., & Jensen, W. A. (1970). Fertilization in barley. American Journal of Botany. Vol. 57. № 1. P. 62–70. DOI: 10.2307/2440380.

Cass, D. D. (1981). Structural relationships among central cell and egg apparatus cells of barley as related to transmission of male gametes. Acta Societatis Botanicorum Poloniae. Vol. 50. № 1/2. P. 177–180. DOI: 10.5586/asbp.1981.027.

Cedergreen, N. (2014). Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PloS one. Vol. 9. №. 5. P. e96580. DOI: 10.1371/journal.pone.0096580.

Chamberlain, C. J. (1937). Gymnosperms: structure and evolution. Chicago: Chicago University Press. 496 p.

Chen, Y. (2014). Estimation of species extinction: what are the consequences when total species number is unknown? Theory in Biosciences. Vol. 133. № 3–4. P. 175–178. DOI: 10.1007/s12064-014-0202-2.

Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology. Vol. 12. №. 2. P. 133–139. DOI: 10.1016/j.pbi.2008.12.006.

Connor, D. J., Loomis, R., & Cassman, K. G. (2011). Crop ecology: Productivity and management in agricultural systems. Cambridge: Cambridge University Press. 562 р.

Convention on biological diversity (1992). United Nations. 30 p. URL: https://www.cbd.int/doc/legal/cbd-en.pdf (accessed 30.04. 2018).

Correns, C. (1909). Vererbungsversuche mit blass(gelb)grünen und buntblättrigen Sippen bei Mirabilis jalapa, Urtica pilulifera und Lunaria annua. Zeitschrift für induktive Abstammungs-und Vererbungslehre. Vol. 1. № 1. P. 291–329.

Coughenour, C. M., & Chamala, S. (2007). Conservation tillage and cropping innovation: Constructing the new culture of agriculture. Hoboken.: Wiley-Blackwell. 360 р.

Darwin Ch. (2010). The different forms of flowers on plants of the same species. Cambridge: University Press, 366 p.

De Kroon, H., Huber, H., Stuefer, J. F., & Van Groenendael, J. M. (2005). A modular concept of phenotypic plasticity in plants.New phytologist. Vol. 166, № 1. P. 73–82. DOI: 10.1111/j.1469-8137.2004.01310.x.

Dellaporta, S. L., & Calderon-Urrea, A. (1993). Sex determination in flowering plants. The Plant Cell. Vol. 5. № 10. P. 1241–1251.

Delmas, C. E., Cheptou, P. O., Escaravage, N., & Pornon, A. (2014). High lifetime inbreeding depression counteracts the reproductive assurance benefit of selfing in a mass-flowering shrub. BMC evolutionary biology. 14. № 1. 243 (P. 1–12). DOI: 10.1186/s12862-014-0243-7.

Dubyna, D. V., & Kordyum, E. L. (2015). Ontogenesis plasticity of vascular plants: molecular, cellular, population and cenotic aspects. Visnyk of the National Academy of Sciences of Ukraine. № 7. P. 32–40. DOI: 10.15407/visn2015.07.032. (in Ukrainian).

Dumont, F. (2010). A history of personality psychology: Theory, science, and research from Hellenism to the twenty-first century. Cambridge: Cambridge University Press. 559 р.

Dupuis, F. (1974). Evolution of the plastidial system during the microsporogenesis in Impatiens balsamina L. Fertilization in higher plants. Proceedings of the International Symposium on Fertilization in Higher Plants. (August 28–30, 1974, Nijmegen, The Netherlands). [Ed.: Hans F. Linskens]. Amsterdam & Oxford: North-Holland Publ. Co. P. 65–71.

Eckert, C. G. (2000). Contributions of autogamy and geitonogamy to self‐fertilization in a mass‐flowering, clonal plant. Ecology. Vol. 81. № 2. P. 532–542. DOI: 10.2307/177446.

Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd_Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in microbiology. Vol. 8. A. 2104. P. 1–14. DOI: 10.3389/fmicb.2017.02104.

Enquist, B. J., Kerkhoff, A. J., Huxman, T. E., & Economo, E. P. (2007). Adaptive differences in plant physiology and ecosystem paradoxes: insights from metabolic scaling theory. Global Change Biology. Vol. 13. № 3. P. 591–609. DOI: 10.1111/j.1365-2486.2006.01222.x.

Ernest, S. M., & Brown, J. H. (2001). Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology. Vol. 82. № 8. P. 2118–2132. DOI: 10.1890/0012-9658(2001)082[2118:HACTRO]2.0.CO;2.

Faure, J. E. (2001). Double fertilization in flowering plants: discovery, study methods and mechanisms. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie. Vol. 324. №. 6. P. 551–558.

Finn, V. V. (1941). Male gametes in angiosperms. Proceedings of the USSR Academy of Sciences. Vol. 30. № 5. P. 454–457.

Fisher R. (1930). The genetical theory of natural selection. Oxford: Clarendon Press. 288 p.

Friedman, T. L. (2009). Hot, flat, and crowded: why we need a green revolution — and how it can renew America. London: Penguin. 528 p.

Gavrilenko, O. P. (2008). Ecogeography of Ukraine: textbook. Kyiv: Znannya. 646 p. (in Ukrainian).

Gehring, Ch., & Irving, H. R. (2012). Peptides and the regulation of plant homeostasis. Plant signaling peptides [Eds.: Helen R. Irving and Christoph Gehring]. Berlin; Heidelberg: Springer, P. 183–198. DOI: 10.1007/978-3-642-27603-3.

Ghedini, G., & Connell, S. D. (2016). Organismal homeostasis buffers the effects of abiotic change on community dynamics. Ecology. Vol. 97. № 10. P. 2671–2679. DOI: 10.1002/ecy.1488.

Goldberg, D. E. (1990). Components of resource competition in plant communities. Perspectives in plant competition. [Eds.: James B. Grace & David Tilman]. San Diego et al.: Academic Press. Part 1. Ch. 3. P. 27–49.

Goldberg, E. E., Kohn, J. R., Lande, R., Robertson, K. A., Smith, S. A. & Igić, B. (2010). Species selection maintains self-incompatibility. Science. Vol. 330. № 6003. P. 493–495. DOI: 10.1126/science.1194513.

Guex, J. E. A. N. (2001). Environmental stress and atavism in ammonoid evolution. Eclogae Geologicae Helvetiae. Vol. 94. №. 3. P. 321–328. DOI: 10.5169/seals-168897.

Gulinchuk, R. (2012). Ecological and economic aspects of sustainable use of land resources. Balanced Nature Using. Vol. 5. № 1. P. 69–74.

Haken, H., Kelso, Kelso J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological cybernetics. Vol. 51. № 5. P. 347–356. DOI:10.1007/BF00336922.

Hartl, D. L., & Clark, A. G. (2007). Principles of population genetics. [4th ed.]. Sunderland: Sinauer associates. 545 p.

Hergenhahn, B. R. (2013). An introduction to the history of psychology. Belmont (CA) et al.: Cengage Learning. 720 р.

Heslop-Harrison, J. (1968). Synchronous pollen mitosis and the formation of the generative cell in massulate orchids. Journal of Cell Science. Vol. 3. №. 3. P. 457–466.

Hoefert, L. L. (1969). Fine structure of sperm cells in pollen grains of Beta. Protoplasma. Vol. 68. №. 1. P. 237–240.

Jaggard, K. W., Qi, A., & Ober, E. S. (2010). Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society of London B: Biological Sciences. Vol. 365 (1554). P. 2835–2851. DOI: 10.1098/rstb.2010.0153.

Jensen, W. A. (1973). Fertilization of flowering plants. BioScience. Vol. 23. № 1. P. 21–27.

Jensen, W. A., & Fisher, D. B. (1968). Cotton embryogenesis: the sperm. Protoplasma. Vol. 65. №. 3. P. 277–286.

Jones, H. G. (2014). Plants and microclimate: a quantitative approach to environmental plant physiology. [Third edition]. Cambridge: University Press. 428 p.

Kalisz, S., & Purugganan, M. D. (2004). Epialleles via DNA methylation: consequences for plant evolution. Trends in Ecology and Evolution. Vol.19. № 6. P. 309–314. DOI: 10.1016/j.tree.2004.03.034.

Kaminskyi, V., Shevchenko, I., & Kolomiiets L. (2018). Scientific-and-methodical maintenance of protection of lands of agricultural assignment as a precondition for sustainable development of agribusiness industry of Ukraine. News of Agrarian Sciences. № 1 (778). P. 5–10. (in Ukrainian).

Kelly, S. A., Panhuis, T. M., & Stoehr, A. M. (2012). Phenotypic plasticity: molecular mechanisms and adaptive significance. Comprehensive Physiology. Vol. 2, № 2. P. 1417–1439. DOI: 10.1002/cphy.c110008.

Khryanin, V. N. (2007). Evolution of the pathways of sex differentiation in plants. Russian Journal of Plant Physiology. Vol. 54. № 6. P. 845–852. DOI: 10.1134/S1021443707060180.

Khryanin, V. N. (2002). Role of phytohormones in sex differentiation in plants. Russian Journal of Plant Physiology. Vol. 49. №4. P. 545–551.

Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mung bean (Vigna radiata L.). Plant Physiology and Biochemistry. Vol. 80. P. 67–74. DOI: 10.1016/j.plaphy.2014.03.026.

Klimešová, J., & Klimeš, L. (2007). Bud banks and their role in vegetative regeneration: A literature review and proposal for simple classification and assessment. Perspectives in Plant Ecology, Evolution and Systematics. Vol. 8, № 3. P. 115–129. DOI: 10.1016/j.ppees.2006.10.002.

Knox, R. B., & Singh, M. B. (1987). New perspectives in pollen biology and fertilization. Annals of Botany. Vol. 60. № 4 (supp.). P. 15–37, DOI: 10.1093/oxfordjournals.aob.a087512.

Kordyum, E. L. (2008). Double fertilization in flowering plants: 1898–2008. Cytology and Genetics. Vol. 42. №. 3. P. 147–158. DOI: 10.3103/S009545270803002X.

Kordyum, E. L. (2012). Phenotypic plasticity and epigenetics. Ukrainian Botanical Journal. Vol. 69. № 2. P. 163–177. (in Ukrainian).

Krenke, N.P. (1950). Regeneration of Plants. Moscow; Leningrad: Academy of Sciences of the USSR Press. 667 p. (in Russian).

Kuperman, Y., Issler, O., Regev, L., Musseri, I., Navon, I., Neufeld-Cohen, A., ... & Chen, A. (2010). Perifornical Urocortin-3 mediates the link between stress-induced anxiety and energy homeostasis. Proceedings of the National Academy of Sciences of the USA. Vol. 107. № 18. P. 8393-8398. DOI: 10.1073/pnas.1003969107.

Lande, R., & Schemske, D. W. (1985). The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution. Vol. 39. №. 1. P. 24–40. DOI: 10.2307/2408514.

Larson, D. A. (1965). Fine structural changes in the cytoplasm of germinating pollen. American Journal of Botany. Vol. 52. № 2. P. 139–154. DOI: 10.1002/j.1537-2197.1965.tb06769.x.

Limousin, J. M., Rambal, S., Ourcival, J. M., Rodríguez-Calcerrada, J., Pérez-Ramos, I. M., Rodríguez-Cortina, R., ... & Joffre, R. (2012). Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia. Vol. 169. №. 2. P. 565–577. DOI: 10.1007/s00442-011-2221-8.

Maletskii, S. I. (2010). Heredity and synergetic interaction in processes of pollination and fertilization in flower plants. Autochthonous and alien plants. The collection of proceedings of the National dendrological park “Sofiyivka” of NAS of Ukraine. Vol. 6. P. 90–103 (in Russian).

Markel’, A. L. (2008). Stress and evolution. The Herald of Vavilov Society for Geneticists and Breeding Scientists. Vol. 12. №. 1/2. P. 206–215.

Mathieu, A., Cournède, P. H., Letort, V., Barthélémy, D., & De Reffye, P. (2009). A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Annals of botany. Vol. 103. № 8. P. 1173–1186. DOI:10.1093/aob/mcp054, available online at www.aob.oxfordjournals.org.

Matson, P. A. Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science. Vol. 277. P. 504–509.

McCue, A. D., Cresti, M., Feijó, J. A., & Slotkin, R. K. (2011). Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. Journal of experimental botany. Vol. 62. №. 5. P. 1621–1631. DOI: 10.1093/jxb/err032.

Medvedev, V. V., & Laktionova, T. M. (2003). State of the monitoring of soils in Ukraine. Ecological Bulletin. № 5–6 (15–16). P. 8–10 (in Ukrainian).

Meyer, B., & Stubbe, W. (1974). Das Zahlenverhältnis von mütterlichen und väterlichen Plastiden in den Zygoten von Oenothera erythrosepala Borbas (syn. Oe. lamarckiana). Berichte Der Deutschen Botanischen Gesellschaft. Vol. 87. P. 29–38.

Melnyk, L. H. (2006). Ecological economics: A textbook. 3rd ed. corrected. Sumy: University book. 367 p. (in Ukrainian).

Minina, E. G. (1952). Smeshchenie pola u rasteniy vozdeystviem faktorov vneshney sredy. Moskva: Izd-vo AN SSR, 199 s. (in Russian).

Mogensen, H. L., & Rusche, M. L. (1985). Quantitative ultrastructural analysis of barley sperm. I. Occurrence and mechanism of cytoplasm and organelle reduction and the question of sperm dimorphism. Protoplasma. Vol. 128. № 1. P. 1–13.

Mogensen, H. L., & Rusche, M. L. (2000). Occurrence of plastids in rye (Poaceae) sperm cells. American Journal of Botany. Vol. 87. № 8. P. 1189–1192. DOI: 10.2307/2656656.

Mogensen, H. L. (1988). Exclusion of male mitochondria and plastids during syngamy in barley as a basis for maternal inheritance. Proceedings of the National Academy of Sciences USA. Vol. 85. № 8. P. 2594-2597. DOI:10.1073/pnas.85.8.2594.

Mogensen, H. L. (1992). The male germ unit: concept, composition, and significance. International Review of Cytology. 1992. Vol. 140. P. 129–147. DOI: 10.1016/S0074-7696(08)61095-5.

Munné-Bosch, S. (2015). Sex ratios in dioecious plants in the framework of global change. Environmental and experimental botany. Vol. 109. P. 99–102. DOI: 10.1016/j.envexpbot.2014.08.007.

Nagata, N., Sodmergen, Saito, C., Sakai, A., Kuroiwa, H., & Kuroiwa, T. (1997). Preferential degradation of plastid DNA with preservation of mitoehondrial DNA in the sperm cells of Pelargonium zonale during pollen development. Protoplasma. Vol. 197. № 3–4. P. 217–229. DOI: 10.1007/BF01288031.

Nawaschin, S. G. (1997). The results of the fertilization revision in Lilium martagon and Fritillaria tenella. Embryology of flowering plants. Terminology and concepts. Three volume edition. Vol. 2. Seed [Ed.: Tatyana B. Batygina] St. Petersburg: World and Family-95. P. 45–50 (in Russian).

Ohya, I., Nanami, S., & Itoh, A. (2017). Dioecious plants are more precocious than cosexual plants: A comparative study of relative sizes at the onset of sexual reproduction in woody species. Ecology and evolution. Vol. 7. № 15. P. 5660–5668. DOI: 10.1002/ece3.3117.

Opalko, A. I., Kucher, N. М., & Opalko, O. А. (2015). Method for evaluation of regeneration potential of pear cultivars and species (Pyrus L.). Ecological Consequences of Increasing Crop Productivity: Plant Breeding and Biotic Diversity [Eds. Anatoly I. Opalko et al.]. Toronto & New Jersey: Apple Academic Press. Ch. 15. P. 141–154.

Opalko, A. I., & Opalko, O. A. (2012). Fruit and vegetable breeding: manual [Ed.: A. I. Opalko]. Uman: NDP "Sofiyivka" of the National Academy of Sciences of Ukraine. Part 1. General principles of vegetable crops breeding. 340 p. (in Ukrainian).

Opalko, A. I., & Opalko, O. A. (2015). Anthropo-adaptability of plants as a basis component of a new wave of the "Green revolution". Biological Systems, Biodiversity, and Stability of Plant Communities. [Eds.: Larissa I. Weisfeld, Anatoly Iv. Opalko, Nina An. Bome et al.]. Oakville & Waretown, Apple Academic Press. Part 1: The Optimization of Interaction of Anthropogenic Changes in Natural Environment: Global Warming and Biological Stability. Ch. 1. P. 3–17.

Opalko, A. I. (2013). Anthropo-adaptability of the plants as a base component of the rational use of land resources, The Development of the Regions in ХХI century. Proceedings of the 1st International Scientific Conference North-Ossetian State University Named After K. L. Hetagurov, (October 31–November 2, 2013) [Ed.: V. G. Sozanova]. Vladicaucasus: North Ossetian State University Press. Part I. P. 348–354. (in Russian).

Opalko, O., & Balabak, O. (1999). Physiological stress as an inductor of rhizogenic activity of horticultural plants cuttings. Bulletin of the Lviv State Agrarian University: Agriculture. №4. P. 179–181 (in Ukrainian).

Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: complexities and surprises. Annals of botany. Vol. 116, №6. P. 849–864. DOI: 10.1093/aob/mcv169.

Pliatsuk, L. D., & Chernysh, E. Iu. (2016). Sinergetika: nelineynye protsessy v ekologii. Sumy: SGU. 229 s. (in Russian).

Popper, K. (1962). Conjectures and refutations: The growth of scientific knowledge. London: Routledge, 410 p.

Pro skhvalennia Kontseptsii Zahal'noderzhavnoi prohramy zberezhennia bioriznomanittia na 2005–2025 roky (2004). Rozporiadzhennia Kabinetu Ministriv Ukrainy vid 22 veresnia 2004 r. № 675-r. Kyiv. URL: https://zakon.rada.gov.ua/laws/show/675-2004-р (accessed 30.04. 2018).

Rautian, A. S. (1993). On the nature of the genotype and of the heredity. Zhurnal Obshchey Biologii. Vol. 54. № 2. Р. 131–148. (in Russian).

Renner, S. S., & Zohner, C. M. (2018). Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annual Review of Ecology, Evolution, and Systematics. Vol. 49. Р. 165–182. DOI: 10.1146/annurev-ecolsys-110617-062535.

Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science. Vol. 7. A. 571. P. 1–26. DOI: 10.3389/fpls.2016.00571.

Sakai, A. K., & Weller, S. G. (1999). Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. Gender and sexual dimorphism in flowering plants [Eds: Monica A. Geber, Todd E. Dawson, Lynda F. Delph]. Berlin; Heidelberg: Springer. Ch. 1. P. 1–31.

Selye, H. (1952). The story of the adaptation syndrome: Told in the form of informal, illustrated lectures. Montreal, Aeta, Inc., 225 p.

Shirokova, N. P., & Kharitonova, S. S. (2014). Osobennosti polovoy differentsiatsii nekotorykh rasteniy v usloviiakh gorodskoy sredy. Molodoy uchenyy. 21.1. S. 264–267. (in Russian).

Sidorskiy, A .G. (1991). Evoliutsiia polovoy organizatsii tsvetkovykh rasteniy. Nizhny Novgorod: Volgo-Viatskoe kn. izd.-vo, 1991. 210 p. (in Russian).

Rosa, E. A., Rudel, T. K., York, R., Jorgenson, A. K., & Dietz, T. (2015). The human (anthropogenic) driving forces of global climate change. Climate change and society: Sociological perspectives. Ch. 2. P. 32–60. DOI: 10.1093/acprof:oso/9780199356102.003.0002.

Rowntree, L., Lewis, M., Price, M., & Wyckoff, W. (2017). Diversity Amid Globalization: World Regions, Environment, Development. [7th ed.]. London: Pearson Education. 728 p.

Russell, S. D. (1983). Fertilization in Plumbago zeylanica: gametic fusion and fate of the male cytoplasm. Amer. J. Bot. Vol. 70, № 3. P. 416-434.

Russell, S. D. (2013). Isolation and characterization of the angiosperm gamete. Mechanism of Fertilization: Plants to Humans. [Ed.: Brian Dale]. Berlin et al.: Springer Science & Business Media. NATO ASI Series H: Cell Biology Vol. 45. Ch. 1. P. 3–15.

Sakai, A. K., & Weller, S. G. (1999). Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. Gender and sexual dimorphism in flowering plants [Eds: Monica A. Geber, Todd E. Dawson, Lynda F. Delph]. Berlin; Heidelberg: Springer. Ch. 1. P. 1–31.

Sauchanka, U. K. (2001). Coenogenetics: Genetics of Biotic Communities. Newbury: CPL Press. 194 p.

Sautkina T.A., & Polixenova V.D. (2015). Plant reproduction as a reflection of the specifics of their life cycles. Vestnik of Belarusian State University. Series 2: Chemistry. Biology. Geography. № 2. P. 52–57 (in Russian).

Sawada, T., Mutoh, A., Kato, S., & Itoh, H. (2003). A model of biological differentiation in adaptiogenesis to the environment. Artificial life VIII: proceedings of the eighth International Conference on Artificial Life (December 09–13, 2002, Sydney, N.S.W.) [Eds: Russell K. Standish, Mark A. Bedau & Hussein A. Abbass]. Cambridge et al. MIT Press. P. 93–96.

Schmalhausen, I. I. (1986). Factors of Evolution: The Theory of Stabilizing Selection. [Ed.: Theodosius G. Dobzhansky]. Chicago: University of Chicago Press. 327 p.

Shapturenko, M., & Khotyleva, L. (2016). Heterosis: current advances in the search for molecular mechanisms. Vavilov Journal of Genetics and Breeding. Vol. 20. № 5. P. 683–694. DOI: 10.18699/VJ16.188.

Teodoro, P. E., Rodrigues, E. V., Peixoto, L. A., Laviola, B. G., & Bhering, L. L. (2017). Diallel analysis in agronomic traits of Jatropha. Crop Breeding and Applied Biotechnology. Vol. 17. P. 259–265. DOI: 10.1590/1984-70332017v17n3a39.

Thomas, P., & Packham, J. (2007). Ecology of woodlands and forests: description, dynamics and diversity. New York: Cambridge University Press. 528 p.

Tiezzi, A., & Crest, M. (2013). The Cytoskeleton during pollen tube growth and sperm cell formation. Mechanism of Fertilization: Plants to Humans. [Ed.: Brian Dale]. Berlin et al.: Springer Science & Business Media. NATO ASI Series H: Cell Biology Vol. 45. Ch. 2. P. 17–34.

Tuteja, N., & Gill, S. S. (2016). Abiotic stress response in plants. Weinheim: John Wiley & Sons. 456 p.

UEBT Biodiversity Barometer: Discover the results of the UEBT survey conducted in 2018. (2018). URL: http://www.biodiversitybarometer.org/#uebt-biodiversity-barometer-2018 (accessed 30.12. 2018).

Vandermeer, J. (2011). The ecology of agroecosystems. Sudbury (Massachusetts) et al.: Jones and Bartlett Publishers, LLC. 387 р.

Varaksina, O. (2016). The assessment of model of organizational and economic mechanism of food security in Ukraine. Scientific Bulletin of Poltava University of Economics and Trade. A series of “Economic Sciences”. № 1 (73). P. 91–99 (in Ukrainian).

Varvio, S-L., Chakraborty, R., & Nei, M. (1986). Genetic variation in subdivided populations and conservation genetics. Heredity. Vol. 57. Pt 2. 189–198. DOI: 10.1038/hdy.1986.109.

Wheeler, J. I., & Irving, H. R. (2012). Plant peptide signaling: An evolutionary adaptation. Plant signaling peptides [Eds.: Helen R. Irving and Christoph Gehring]. Berlin; Heidelberg: Springer, P. 1–23. DOI: 10.1007/978-3-642-27603-3_1.

Wright, S. (1931). Evolution in Mendelian populations. Genetics. Vol. 16. № 2. P. 97–159.

Zargar, S. M., & Zargar, M. Y. (eds.) (2018). Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Singapore: Springer. DOI: 10.1007/978-981-10-7479-0.

Zhang, Q, Liu, Y., & Sodmergen. (2003). Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant and Cell Physiology. 2003. Vol. 44. № 9. P. 941–951. DOI: 10.1093/pcp/pcg121.

Zhang, X. (2008). The epigenetic landscape of plants. Science. Vol. 320. № 5875. P. 489–492. DOI: 10.1126/science.1153996.

How to Cite

Opalko, A., & Opalko, O. (2019). Biodiversity as the fundamental of plant population viability. Journal of Native and Alien Plant Studies, (15), 77–98. https://doi.org/10.37555/.15.2019.184904

Issue

Section

Статті