Peculiarities of the reproductive biology of the genus Malus Mill.


  • Alla Konopelko



biology of plant propagation, ploidy, gametophytic self-incompatibility, apomixis, hybridization, species, adaptivity, reproductive strategy.


Aim. The necessity to generalize information from the literature as to the features of Malus spp. reproductive biology caused by the prospects of using apple trees as a valuable plant and associated with the development of the effective methods of reproduction in terms of the biodiversity conservation problem, enriching the range of ornamental woody plants, introduction and selection. Methods. In the process of analysis and synthesis of available scientific information on the reproductive biology of the genus Malus, the interconnected and interdependent processes of reproduction in general and the development of individual reproductive organs with phylogenetic, biotic, abiotic and anthropogenic factors are generalized. Results. The main characteristics of the generative sphere and the factors, influencing the manifestation of the reproductive function of Malus spp. both in natural areas and the conditions of introduction had been revealed. An attempt is made to find and explain the differences in the realization of reproductive potential within the genus. The need to take into account ecology and evolution in the study of reproductive processes Malus spp. at the level of individual organisms, populations and species are emphasized. Conclusions. Critical aspects of the reproductive biology of the genus Malus are allogamy and gametophytic self-incompatibility, with some differences in the realization of reproductive potential due to polyploidy, facultative apomixis, self-incompatibility and hybridization, which will contribute to the development of effective methods of ornamental species and varieties of apple trees reproduction.


Aguiar, B., Vieira, J., Cunha, A. E., Fonseca, N. A., Iezzoni, A., van Nocker, S., & Vieira, C. P. (2015). Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus. PloS one. 10 (5). Р. 1–24. DOI: 10.1371/journal.pone.0126138.

Aizen, M. A., & Harder, L. D. (2007). Expanding the limits of the pollen‐limitation concept: effects of pollen quantity and quality. Ecology. 88 (2). Р. 271–281. DOI: 10.1890/06-1017.

Aldasoro, J. J., Aedo, C., & Navarro, C. (2005). Phylogenetic and phytogeographical relationships in Maloideae (Rosaceae) based on morphological and anatomical characters. Blumea-Biodiversity, Evolution and Biogeography of Plants. 50 (1). Р. 3–32. DOI: 10.3767/000 651905X623256.

Buyun L. I. (2013). The peculiarities of reproduction systems in orchids. Plant introduction. 2. Р. 29–39. DOI: 10.5281/1492314.

Cho, K., Kim, J., Lee, J., Kwon, S., Paek, J., Shin, I., ... & Choi, I. (2014). Identification of self-incompatibility genotypes in apple and crabapple cultivars by S-allele specific PCR analysis. Korean Journal of Breeding Science. 46 (4). Р. 364–371. DOI: 10.9787/KJBS.2014.46.4.364.

Coart, E., Vekemans, X., Smulders, M. J., Wagner, I., Van Huylenbroeck, J., Van Bockstaele, E., & Roldán‐Ruiz, I. (2003). Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and micro-satellite markers. Molecular ecology. 12 (4). Р. 845–857. DOI: 10.1046/j.1365-294X.2003.01778.x.

Cornille, A., Giraud, T., Smulders, M. J., Roldán-Ruiz, I., & Gladieux, P. (2014). The domestication and evolutionary ecology of apples. Trends in Genetics. 30 (2). Р. 57–65. DOI: 10.10 16/j.tig.2013.10.002.

Cornille, A., Feurtey, A., Gélin, U., Ropars, J., Misvanderbrugge, K., Gladieux, P., & Giraud, T. (2015). Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evolutionary applications. 8 (4). Р. 373–384. DOI: 10.5061/dryad.bm46p.

Dickinson, T. A., Lo, E., & Talent, N. (2007). Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant systematics and evolution. 266 (1–2). Р. 59–78. DOI: 10.1007/s00606-007-0541-2.

Dirr, M. A. (1998). Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses. 6th Edition. Champaign, Ilinois: Stipes Publishing.

Fan, J., Zhang, W., Zhang, D., Wang, G., & Cao, F. (2019). Flowering Stage and Daytime Affect Scent Emission of Malus ioensis 'Prairie Rose'. Molecules, 24 (13). Р. 1–13. DOI: 10.3390/ molecules24132356.

Janick J., Cummins J. N., Brown, S. K., & Hemmat M. (1996). Apples. Fruit Breeding. Vol. I: Tree and Tropical Fruits. P. 1–77.

Hartmann H. T., Kester, D. E., Davies, F. T., & Robert, L. (2009). Propagation of ornamental trees. Shrubs, and Woody Vines. P. 774–839.

Höfer, M., & Meister, A. (2010). Genome Size Variation in Malus Species. Journal of Botany. P. 1–8. DOI: 10.1155/2010/480873.

Kaden, N. N. (1968). Evolution on fruit of Rosales. Russ. Bull. Soc. Nat. Moscou Biol. Vol. 73. No 2. S. 127–131. (in Russian).

Kleinschmit, J., Stephan, R., & Wagner, I. (1998). Wild fruit trees (Prunus avium, Malus sylvestris and Pyrus pyraster). Noble Hardwoods Network; IPGRI/EUFORGEN Report of the Second Meeting (22–25 March 1997). Spain: Lourizan. P. 51–60.

Koltunow, A. M., Scott, N. S., & Chaudhury, A. M. (2000). The use of apomixis in cloning horticultural plants: current applications and molecular prospects. IV International Symposium on In Vitro Culture and Horticultural Breeding. 560. P. 333–343. DOI: 10.17660/ActaHortic. 2001.560.64.

Konopelko, A. V. (2018). Pollen quality in some representatives of the genus Malus Mill. as an indicator of reproductive features and adaptivity of plants. Landshaftna arkhіtektura v botanіch-nikh sadakh і dendroparkakh: materіali Kh Mіzhnarodnoї naukovoї konferentsії (12–15 chervnia 2018 roku). Kam'ianets'-Podіl's'kiy: FOP Sisin O. V. S. 176–181. (in Ukrainian with English abstract).

Kron, P., & Husband, B. C. (2009). Hybridization and the reproductive pathways mediating gene flow between native Malus coronaria and domestic apple, M. domestica. Botany. Vol. 87. No 9. Р. 864–874. DOI: 10.1139/B09-045.

Krylova, V. V. (1981). Embriologiia iabloni. Kishinev: Shtiinca. 148 s. (in Russian).

Kozlovskaya Z. A. (2015) Apple tree breeding in Belarus. Minsk: Belaruskaya navuka. 457 p. (in Russian).

Langenfelds V. (1991). Apple-tree: morphological, evolution, phylogeny, geography, systematic. Riga: Zinatne. 234 p. (in Russian).

Larsen, A. S., & Kjær, E. D. (2009). Pollen mediated gene flow in a native population of Malus sylvestris and its implications for contemporary gene conservation management. Conservation Genetics. Vol. 10. No 6. Р. 1637–1646. DOI: 10.1007/s10592-008-9713-z.

Levina, R. E. (1981). Reproduktivnaia biologiia semennykh rasteniy. Moskva: Nauka. 96 s. (in Russian).

Liu, D. D., Dong, Q. L., Sun, C., Wang, Q. L., You, C. X., Yao, Y. X., & Hao, Y. J. (2012). Functional characterization of an apple apomixis-related MhFIE gene in reproduction development. Plant science. Vol. 185–186. P. 105–111. DOI: 10.1016/j.plantsci.2011.09.004.

Liu, D. D., Fang, M. J., Dong, Q. L., Hu, D. G., Zhou, L. J., Sha, G. L., ... & Hao, Y. J. (2014). Unreduced embryo sacs escape fertilization via a ‘female-late-on-date’ strategy to produce clonal seeds in apomictic crabapples. Scientia Horticultura. Vol. 167. P. 76–83. DOI: 10.1016/j. scienta.2013.12.035.

Malladi, A. (2020). Molecular Physiology of Fruit Growth in Apple. Horticultural Reviews. Vol. 47. Р. 1–42. DOI: 10.1002/9781119625407.ch1.

Malus Mill. Catalogue of Life (2020). Annual Checklist URL: https://www.catalogueoflife. org/col/search/all/key/malus/fossil/1/match/1 (Accessed 20 May 2020).

Malus Mill. The Plant List (2013). Version 1.1 URL: search?q=malus (Accessed 20 May 2020).

Mir, J. I., Ahmed, N., Singh, D. B., Sheemar, G., Hamid, A., Zaffar, S., & Shafi, W. A. J. I. D. A. (2016). Molecular identification of S-alleles associated with self incompatibility in apple (Malus spp.) genotypes. Indian Journal of Agricultural Sciences. Vol. 86. No 1. Р. 78–81.

OECD (2019), «Consensus document on the biology of apple (Malus domestica Borkh.)». Series on Harmonisation of Regulatory Oversight in Biotechnology, No. 66, organisation for Eco-nomic Corporation and Development, Paris. 51 р. URL: publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2019)30%20&doclanguage=en (Accessed 1 September 2020).

Opalko, A. I., & Opalko, O. A. (2015). The outlook for the improvement of breeding and genetics problems of apple tree (Malus Mill.). Factors in experimental evolution of organisms. 16. Р. 141–146. (in Ukrainian).

Opalko, A. I., & Opalko, O. А. (2019а). Biodiversity as the fundamental of plant population viability. Journal of Native and Alien Plant Studies. 15. P. 77–98. (in Ukrainian).

Opalko, A. I., & Opalko, O. A. (2019b). Stratehiia zberezhennia ex situ derevnykh roslyn zalezhno vid osoblyvostey ikhn'oi reproduktyvnoi biolohii. Stratehiia zberezhennia roslyn u botanichnykh sadakh ta dendroparkakh: materialy mizhnarodnoi naukovoi konferentsii (25–27 liutoho 2019 roku). [vidp. red. N. V. Zaimenko]. Kyiv: Lira. S. 240–241. (in Ukrainian).

Opalko, O. A., Konopelko, A. V., & Opalko, А. I. (2019). An apple Malus Mill. in the history and culture of the Ukrainian and other ethnoces. Siberian Journal of Forest Science. No 4. P. 18–35. (in Russian with English abstract). DOI: 10.15372/SJFS20190403.

Opalko, O. A. (2010). The formation, morphology and pollen productivity of micro-sporophylls of representatives of genus Malus Mill.. Autochthonous and alien plants. Vol. 6. Р. 30–36. (in Ukrainian).

Orcheski, B., & Brown, S. (2012). A grower’s guide to self and cross-incompatibility in apple. New York Fruit Quart. Vol. 20. Р. 25–28.

Papikhin, R. W. (2017). Malus sieboldii microprologenesis analysis. Environmental, Industrial and Energy Security – 2017: Materials of the scientific and practical conference with international participation (September 11–15, 2017, Sevastopol). P. 1033–1035. (in Russian with English abstract).

Pereira-Lorenzo, S., Ramos-Cabrer, A. M., & Fischer, M. (2009). Breeding apple (Malus x domestica Borkh). Breeding plantation tree crops: temperate species. New York: Springer. P. 33–81. DOI: 10.1007/978-0-387-71203-1_2.

Pereira-Lorenzo, S., Fischer, M., Ramos-Cabrer, A. M., & Castro, I. (2018). Apple (Malus spp.) breeding: present and future. Advances in plant breeding strategies: fruits. Cham: Springer. P. 3–29. DOI: 10.1007/978-3-319-91944-7_1.

Phipps, J. B., Robertson, K. R., Smith, P. G., & Rohrer, J. R. (1990). A checklist of the subfamily Maloideae (Rosaceae). Canadian journal of botany. Vol. 68. No 10. P. 2209–2269.

Pratas, M. I., Aguiar, B., Vieira, J., Nunes, V., Teixeira, V., Fonseca, N. A., ... & Vieira, C. P. (2018). Inferences on specificity recognition at the Malus×domestica gametophytic self-incompati-bility system. Scientific reports. Vol. 8. No 1. Р. 1–17.

Pratt, C. (1988). Apple flower and fruit: morphology and anatomy. Horticultural Reviews. Vol. 10. Р. 273–308.

Ramírez, F., & Davenport, T. L. (2013). Apple pollination: a review. Scientia Horticulturae. Vol. 162. Р. 188–203. DOI: 10.1016/j.scienta.2013.08.

Ranney, T., & Eaker, T. (2004). Variation in ploidy levels and reproductive pathways among flowering crabapples. HortScienc. Vol. 39. No 4. P. 773B–773. DOI: 10.21273/HORTSCI. 39.4.773B.

Reim, S., Proft, A., Heinz, S., Lochschmidt, F., Höfer, M., Tröber, U., & Wolf, H. (2017). Pollen movement in a Malus sylvestris population and conclusions for conservation measures. Plant Genetic Resources. Vol. 15. No 1. Р. 12–20. DOI: 10.1371/journal.pgen.1002703.

Ruhsam, M., Jessop, W., Cornille, A., Renny, J., & Worrell, R. (2019). Crop-to-wild intro-gression in the European wild apple Malus sylvestris in Northern Britain. Forestry: An International Journal of Forest Research. Vol. 92. No 1. Р. 85–96. DOI: 10.1093/forestry/cpy033.

Sampson, D. R. (1969). Use of a leaf color marker gene to detect apomixis in Malus species and observations on the variability of the apomictic seedlings. Canadian Journal of Plant Science. Vol. 49. No 4. P. 409–416.

Schuster, M., & Büttner, R. (1995). Chromosome numbers in the Malus wild species collection of the genebank Dresden-Pillnitz. Genetic resources and crop evolution. Vol. 42. No 4. P. 35–361.

Sheffield, C. S., Smith, R. F., & Kevan, P. G. (2005). Perfect syncarpy in apple (Malus× domestica ‘Summerland McIntosh’) and its implications for pollination, seed distribution and fruit production (Rosaceae: Maloideae). Annals of Botany. Vol. 95. No 4. P. 583–591. DOI: 10.1093/ aob/mci058.

Sheick, R., Serra, S., De Franceschi, P., Dondini, L., & Musacchi, S. (2018). Characterization of a novel self-incompatibility allele in Malus and S-genotyping of select crabapple cultivars. Scientia Horticulturae. Vol. 240. P. 186–195. DOI: 10.1016/j.scienta.2018.05.050.

Shevchenko S. V. (2005). The reproductive biology of the introduced plants. Sbornik nauch-nykh trudov Gosudarstvennogo Nikitskogo botanicheskogo sada. Vol. 125. S. 24–34. (in Russian with English abstract).

Shirokova N. P. (2014). Gynoecium morphology and its transformation during fruit formation process of some plants species of the family Fabaceae and the family Rosaceae. Almanac of Modern Science and Education. Tambov: Gramota. No 4(83). P. 188–192. (in Russian with English abstract).

Shishkinskaja, N. A., & Judakova, O. I. (2009). Apomixis and plant evolution. Izvestija Saratovskogo universiteta. Novaja serija. Serija Himija. Biologija. Jekologija. Vol. 9. No 1. P. 55–60. (in Russian with English abstract).

Spengler, R. N. (2019). Origins of the apple: the role of megafaunal mutualism in the domestication of Malus and rosaceous trees. Frontiers in plant science. Vol. 10. Р. 617 (1–18). DOI: 10.3389/fpls.2019.00617.

Tatum, T. C., Stepanovic, S., Biradar, D. P., Rayburn, A. L., & Korban, S. S. (2005). Variation in nuclear DNA content in Malus species and cultivated apples. Genome. Vol. 48. No 5. P. 924–930. DOI: 10.1139/g05-033.

Teryokhin, E. S. (2000) Reproductive biology. Embryology of flowering plants. Terminology and concepts [Ed.: T. B. Batugina]. St. Petersburg. P. 72–73. (in Russian).

Vallejo-Marín, M., Dorken, M. E., & Barrett, S. C. (2010). The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution, and Systematics. Vol. 41. P. 193–213. DOI: 10.1146/annurev.ecolsys.110308.120258.

Xue, C., Xi-jin, M., Zhi-qing, Z., Zhi-ming, H., Yan-hong, H., & Qi-xin, S. (1997). Poly-embryony and multiple seedlings in the apomictic plants. Journal of Integrative Plant Biology. Vol. 39. No 7. P. 590–595.

Yang, H., Duan, K., & Zhang, W. (2008). Biology and physiology of Malus hupehensis for the apogamic plant resource. Acta Horticulturae. Vol. 769. P. 441–447. DOI: 10.17660/ActaHortic. 2008.769.63.

Yang, M., Li, F., Long, H., Yu, W., Yan, X., Liu, B., ... & Song, W. (2016). Ecological distribution, reproductive characteristics, and in situ conservation of Malus sieversii in Xinjiang, China. HortScience. Vol. 51. No 9. Р. 1197–1201. DOI: 10.21273/HORTSCI10952-16.

Zhou, T., Fan, J., Zhao, M., Zhang, D., Li, Q., Wang, G., ... & Cao, F. (2019). Phenotypic variation of floral organs in Malus using frequency distribution functions. BMC Plant Biology. Vol. 19. No 1. Р. 1–11. DOI: 10.1186/s12870-019-2155-6.

Zhou, T., Zhang, W., Zhang, D., El-Kassaby, Y. A., Fan, J., Jiang, H., ... & Cao, F. (2020). A binary-based matrix model for Malus corolla symmetry and its variational significance. Frontiers in Plant Science. Vol. 11. P. 416 (1–14). DOI: 10.3389/fpls.2020.00416.